The zinc regulated antivirulence pathway of Salmonella is a multiprotein immunoglobulin adhesion system.

نویسندگان

  • Gerd Prehna
  • Yuling Li
  • Nikolay Stoynov
  • Mark Okon
  • Marija Vuckovic
  • Lawrence P McIntosh
  • Leonard J Foster
  • B Brett Finlay
  • Natalie C J Strynadka
چکیده

The co-evolutionary relationship between pathogen and host has led to a regulatory cycle between virulence factors needed for survival and antivirulence factors required for host transmission. This is exemplified in Salmonella spp. by the zirTS antivirulence genes: a secretion pathway comprised of the outer membrane transporter ZirT, and its secreted partner, ZirS. ZirTS act within the gastrointestinal tract to function as a virulence modulator and during Salmonella shedding in anticipation of a new host. Together, ZirT and ZirS decrease virulence by lowering bacterial colonization at systemic sites through an unknown mechanism. To understand this mechanism, we have probed the zirTS pathway both structurally and biochemically. The NMR derived structural ensemble of the C-terminal domain of ZirS reveals an immunoglobin superfamily fold (IgSF). Stable isotope labeling by amino acids in cell culture experiments show that the ZirS IgSF domain interacts with its transporter ZirT, and reveal a new protein interaction partner of the pathway, a protein encoded adjacent to zirTS that we have designated as ZirU. ZirU is secreted by ZirT and is also a predicted IgSF. Biochemical analysis delineates ZirT into an N-terminal porin-like β domain and C-terminal extracellular soluble IgSF domain, whereas biophysical characterization suggests that the transporter undergoes self-association in a concentration-dependent manner. We observe that ZirS and ZirU directly interact with each other and with the extracellular domains of ZirT. Here we show that the zir antivirulence pathway is a multiprotein immunoglobulin adhesion system consisting of a complex interplay between ZirS, ZirT, and ZirU.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Secretion Pathway of Salmonella enterica Acts as an Antivirulence Modulator during Salmonellosis

Salmonella spp. are Gram-negative enteropathogenic bacteria that infect a variety of vertebrate hosts. Like any other living organism, protein secretion is a fundamental process essential for various aspects of Salmonella biology. Herein we report the identification and characterization of a horizontally acquired, autonomous and previously unreported secretion pathway. In Salmonella enterica se...

متن کامل

Different Stages of Platelet Adhesion to the Site of Vascular Injury

Platelet activation and adhesion to the site of vascular injury is a dynamic process comprising reversible and irreversible phases. Platelet adhesion typically occurs in a multi-step process similar to the selectin/integrin-mediated adhesion of neutrophils. This phenomenon is highly regulated and influenced by the cross-talk between platelets and injured endothelium. This cross-talk involves a ...

متن کامل

Focal Adhesion Kinase (FAK) Involvement in Human Endometrial Remodeling During the Menstrual Cycle

Background: Endometrial remodeling occurs during each menstrual cycle in women. Reports have shown that, in a variety of cell types, processes such as proliferation, signaling complex formation and extra cellular matrix remodeling require a cytoplasmic tyrosine kinase, focal adhesion kinase (FAK). The present study has focused on the expression pattern of FAK in human endometrium during the men...

متن کامل

UBE2Q1, as Down Regulated Gene in Pediatric Acute Lymphoblastic Leukemia

Ubiquitin - proteasome system (UPS), the major protein degradation pathway in the cells, typically degrades short - lived and damaged proteins and regulates growth and stress responses. This pathway is altered in various cancers, including Acute Lymphoblastic Leukemia (ALL). ALL begins with a change in bone marrow cells and is the most common type of leukemia in children under 15 years. UBE2Q1...

متن کامل

Effect of Zinc Supplementation on Urate Pathway Enzymes in Spermatozoa and Seminal Plasma of Iraqi Asthenozoospermic Patients: A Randomized Clinical Trial

a:4:{s:9:"Objective";s:402:"Uric acid (UA) is crucial for sperm metabolism; it protects seminal plasma against oxidative damage. Zinc, too, plays a central role in sperm metabolism. The current study was designed to investigate the role of zinc supplementation on the qualitative and quantitative properties of seminal fluid, in parallel with the UA level and urate pathway enzymes in the semen of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 39  شماره 

صفحات  -

تاریخ انتشار 2012